Bilingualism and Executive Function: An Interdisciplinary Approach May 18-19, 2015
City University of New York Graduate Center

DISCUSSION

on

BILINGUALISM, LINGUISTIC STRUCTURE, AND EXECUTIVE FUNCTION IN CHILDREN Klara Marton Antonella Sorace

Virginia C. Mueller Gathercole

Linguistics Program, Florida International University

THIS SESSION: 2 impressive, thoughtprovoking studies:

Marton: Do bilingual children perform more efficiently in experimental tasks than their monolingual peers?
Sorace: L1 attrition meets L2 acquisition in proficient late bilingualism

Both Studies:

Provide rich food for thought concerning exactly what is influencing what in bilinguals' performance on linguistic and non-linguistic tasks, EF in particular.

Both Studies:

Provide rich food for thought concerning exactly what is influencing what in bilinguals' performance on linguistic and non-linguistic tasks, EF in particular.
Are attempting to separate a range of factors influencing performance in Bilinguals and Monolinguals

Both Studies:

Provide rich food for thought concerning exactly what is influencing what in bilinguals' performance on linguistic and non-linguistic tasks, EF in particular.
Are attempting to separate a range of factors influencing performance in Bilinguals and Monolinguals
Compare types of Bilinguals to explore the generality of effects across populations

Marton:

- Influence of language proficiency on speed of processing
- Comparison of baseline, labeling, nonverbal cue, and proactive interference conditions on Accuracy and RT performance
- Comparison of monolinguals and bilinguals
- Comparison of bilingual children in distinct contexts

Marton:

- Influence of language proficiency on speed of processing
- Comparison of baseline beling verbal cue, and proactive interrerence conditions on Accuracy and RT performance
- Comparison of monolinguals and bilinguals
- Comparison of bilingual children in distinct contexts

Marton:

- Influence of language proficiency on speed of processing
- Comparison of baseline thelino verbal cue, and proactiv Especially ~ ${ }^{e}$ conditions on Accuracy : RT, Proactive performance Interference
- Comparison of monolinguals and bilinguals
- Comparison of bilingual children in distinct contexts

Marton:

- Influence of language proficiency on speed of processing

Especially ~

 RT, Proactive Interference- Examination of performance monitoring

Marton:

- Influence of language proficiency on speed of processing
- Examination of performance monitoring

Marton:

- Influence of language proficiency on speed of processing
- Examination of performance monitoring
- Relationships between performance in distinct tasks

Marton:

- Influence of language proficiency on speed of processing
- Examination of performance monitoring
- Relationships between per ormance in distinct tasks

Sorace:

- Explores the role of cognition - especially EF - in the linguistic performance of bilinguals
- Examines performance on a range of linguistic structures: Overt/null pronouns in Italian (Absence of) use of definite articles for generics in Italian
- Compares bilinguals with monolinguals
- Compares types of bilinguals

Sorace:

- Explores the role of cognition - especially EF - in the linguistic performance of bilinguals
- Examines performance on a range of linguistic structures:

Overt/null pronouns in Italian
(Absence of) use of definite articles for generics in Italian

Sorace:

- Explores the role of cognition - especially EF - in the linguistic performance of bilinguals
- Examines performance on a range of linguistic structures:

Overt/null pronouns in Italian (Absence of) use of definite articles for generics in Italian
~Referential ambiguity; syntax-pragmatics interface

Sorace:

- Addresses the separate contributions of Processing and Transfer to Bilinguals' performance

Sorace:

- Addresses the separate contributions of Processing and Transfer to Bilinguals' performance

Both are in evidence:
Processing: all Bils: over-use of overt pros (and under-use of null pros)
Transfer: E-I bilinguals: greater use of bare Ns for generics, more over-use of overt pros than S-I bilinguals

Sorace:

- Proposes a trade-off in bilinguals' performance between
integration and updating in linguistic processing
and
inhibitory control

Sorace:

- Proposes a trade-off in bilinguals' performance between
integration and updating in linguistic processing Mons > Bils
and inhibitory control

Sorace:

- Proposes a trade-off in bilinguals' performance between
integration and updating in linguistic processing Mons > Bils
and inhibitory control

Bils > Mons

Sorace:

- Proposes a trade-off in bilinguals' performance between
integration and updating in linguistic processing Mons > Bils
and

inhibitory control

Bils > Mons

Competition between resources responsible for bilinguals' difficulties with referential ambiguity in null/overt pronoun use.

Strengths of these talks:
Attempt to uncover in more detail what factors contribute to bilinguals' performance:

Strengths of these talks:
Attempt to uncover in more detail what factors contribute to bilinguals' performance:

How language proficiency contributes to performance on linguistic and interference tasks - both accuracy and speed of processing

Strengths of these talks:
Attempt to uncover in more detail what factors contribute to bilinguals' performance:

How language proficiency contributes to performance on linguistic and interference tasks - both accuracy and speed of processing
What are the roles of language balance and environment on performance?

Strengths of these talks:
Attempt to uncover in more detail what factors contribute to bilinguals' performance:

How language proficiency contributes to performance on linguistic and interference tasks - both accuracy and speed of processing
What are the roles of language balance and environment on performance? Type of bilingual matters Marton: range of proficiency? environment? Sorace: L2ers with distinct L1s? environ?

Strengths of these talks:

Address the role of EF and cognition in general in linguistic performance of bilinguals

Strengths of these talks:
Address the role of EF and cognition in general in linguistic performance of bilinguals
Examine contributions of processing limitations to bilinguals' language performance

Strengths of these talks:
Address the role of EF and cognition in general in linguistic performance of bilinguals
Examine contributions of processing limitations to bilinguals' language performance
Try to identify the locus of interaction between the two languages

Strengths of these talks:
Address the role of EF and cognition in general in linguistic performance of bilinguals
Examine contributions of processing limitations to bilinguals' language performance
Try to identify the locus of interaction between the two languages
Delineate linguistic sub-systems that are and are not affected by EF, processing limitations, and transfer

Questions/Issues: Specific:

Marton:

Questions/Issues: Specific:

Marton:
$\underset{\text { Proficiency }}{\text { Lang }} \rightarrow \underset{\substack{\text { Interference } \\ \text { Tasks }}}{\begin{array}{c}\text { Speed in } \\ \text { Proactive } \\ \text { ing }\end{array}} \rightarrow \underset{\text { Learning }}{\text { Implicit }}$

Questions/Issues: Specific:

Marton:

Speed in

$\underset{\text { Proficiency }}{\text { Lang }} \rightarrow \underset{\text { Interference }}{\text { Proactive }} \rightarrow \underset{\text { ing }}{\text { Monitor- }} \rightarrow \underset{\text { Learning }}{\text { Implicit }}$
Speed in $\Rightarrow \begin{gathered}\text { Proactive } \\ \text { Interference } \\ \text { Tasks }\end{gathered}$
Lang
Proficiency
\rightarrow Monitoring
\longrightarrow Implicit
Learning

Questions/Issues: Specific:

Marton:

Questions/Issues: Specific:

Sorace:

Questions/Issues: Specific:

Sorace:

Why wouldn't a superior control of inhibition in bilinguals offset or compensate for any deficiencies in integration?

Questions/Issues: More general: 1. Both bring up Q of role of linguistic proficiency:

Questions/Issues: More general:

1. Both bring up Q of role of linguistic proficiency:
Marton: Clear effects of language proficiency on performance on proactive interference task

Questions/Issues: More general:

1. Both bring up Q of role of linguistic proficiency:
Marton: Clear effects of language proficiency on performance on proactive interference task
Sorace raises the Q of whether the items are "not completely acquired"

Questions/Issues: More general:

1. Both bring up Q of role of linguistic proficiency:
Marton: Clear effects of language proficiency on performance on proactive interference task
Sorace raises the Q of whether the items are "not completely acquired"

Also: "Younger monolingual control children also accept inappropriate overt pronouns"
as well as autistic individuals.

Questions/Issues: More general:
2. What about GENERAL cognition? How does this feed into the picture of language and EF performance?

Questions/Issues: More general:
2. What about GENERAL cognition? How does this feed into the picture of language and EF performance?
and
How do effects of general cognitive abilities influence performance relative to:

Exposure
SES

Questions/Issues: More general:

Clear evidence that Exposure and SES affect language performance
Exposure: Both talks here; Bialystok, Luk, Peets, \& Yang, 2010; Bridges and Hoff, 2014; Gathercole \& Thomas, 2009; Harley, Allen, Cummins, \& Swain, 1991; Hoff, Core, Place, Rumiche, Senor, \& Parra, 2012; Kohnert \& Windsor, 2004; Lapkin, Swain, \& Shapson, 1990; Letts, 2013; Oller \& Eilers,2002; Paradis,2010; Place and Hoff, 2011; Gathercole, 2007; Thordardottir, 2011; Unsworth, in press; Windsor \& Kohnert, 2004; Wong-Fillmore, 2000;
SES: Calvo \& Bialystok, 2014; Chiat et al., 2013; Fuller et al, 2015; Gatt \& O'Toole, 2013; Oller \& Eilers, 2002; Stadthagen-González et al., 2013

Questions/Issues: More general:
2. What about GENERAL cognition? How does this feed into the picture of language and EF performance? and
How do effects of general cognitive abilities influence performance relative to:

Exposure
SES

Questions/Issues: More general:
2. What about GENERAL cognition? How does this feed into the picture of language and EF performance? and
How do effects of general cognitive abilities influence performance relative to:

Exposure
SES
and, for EF tasks, Language proficiency

Studies on EF in bilinguals in Wales
(Gathercole, et al., 2010, 2013)
Included
BPVS (Dunn, Dunn, \& Whetton, 1982)
PGC (Gathercole \& Thomas, 2007)
E Grammar (13 structures)
W Grammar (13 structures)
McCarthy Scales of Children's Abilities (McCarthy, 1972) [up to age 8]
Raven's Coloured Progressive Matrices (Raven, Court, \& Raven, 1983) [from age 7]

McCarthy: Sub-sections:

pictorial memory,
block building,
puzzle making,
tapping sequence,
number questions,
numerical memory,
numerical memory reversal,
and
counting and sorting

McCarthy:

Sub-sections:
pictorial memory [Verbal Scale]
block building,
puzzle making,
tapping sequence,
number questions,
numerical memory,
numerical memory reversal,
and
counting and sorting

McCarthy:

Sub-sections:
pictorial memory [Verbal Scale]
block building,
puzzle making, tapping sequence, number questions,
numerical memory, numerical memory reversal, and
counting and sorting

McCarthy:

Sub-sections:
pictorial memory [Verbal Scale]
block building,
puzzle making, tapping sequence, number questions, numerical memory, numerical memory reversal, and
counting and sorting
[Perceptual-
Performance Scale]
[Quantitative]

McCarthy:
Sub-sections:
pictorial memory [Verbal Scale, Memory]
block building, puzzle making, tapping sequence, -- [Memory] number questions, numerical memory, numerical memory reversal, and counting and sorting
[Perceptual-
Performance Scale]
[Quanti- [Mem] tative]
ـ

Participants:

Mon E
Bil: OEH, WEH, OWH [~ exposure, balance]
Ages: 3, 4, 5, Primary (7-8), Teens (12-15),
Younger Adults (20-40), Older Adults (60+)

Q 1:

Does general cognitive ability influence language proficiency?

- Correlations Cognitive ~ Linguistic Perform.
- Regression analyses, Linguistic/EF Perform Variables:
Cognitive performance
Home Language [~ Exposure]
SES [M's, F's professions and education] and, for EF, Language and Mon/Bil

McCarthy - TOT Score:

	BPVS	PGC	E Gram	W Gram	BPVS	PGC	E Gram	W Gram
All								
Bils Only								
Mons Only								

5
Primary School Age

			E	W			E	W
	BPVS	PGC	Gram	Gram	BPVS	PGC	Gram	Gram
All								
Bils Only								
Mons Only								

${ }^{*} \mathrm{p}<.05{ }^{* *} \mathrm{p}<.01 \quad * * * \mathrm{p}<.001$

McCarthy - TOT Score:

	3				4			
	BPVS	PGC	$\begin{gathered} \text { E } \\ \text { Gram } \end{gathered}$	$\begin{gathered} \text { W } \\ \text { Gram } \end{gathered}$	BPVS	PGC	$\begin{gathered} \text { E } \\ \text { Gram } \end{gathered}$	$\begin{gathered} \text { W } \\ \text { Gram } \end{gathered}$
All	515	$.330$	$.322$					
Bils Only	${ }_{* * *}^{425}$	${ }_{*}^{* *}$						
Mons Only			${ }_{\text {. }}^{*} \times 26$					

5
Primary School Age

	BPVS	PGC	E Gram	W Gram	BPVS	PGC	E Gram	W Gram
All								
Bils Only								
Mons Only								

${ }^{*} \mathrm{p}<.05{ }^{* *} \mathrm{p}<.01$ *** $\mathrm{p}<.001$

McCarthy - TOT Score:

	3				4			
	BPVS	PGC	E Gram	W Gram	BPVS	PGC	E Gram	W Gram
	. 515	. 330	. 322		. 384		. 311	. 310
All	***	**	*		***		*	*
	. 425	. 330			. 335	. 270		. 310
Bils Only	***	**			*	*		*
			. 626		. 740		. 593	
Mons Only			*		**		***	

5
Primary School Age

	BPVS	PGC	$\begin{gathered} \mathrm{E} \\ \text { Gram } \end{gathered}$	$\begin{gathered} \text { W } \\ \text { Gram } \end{gathered}$	BPVS	PGC	$\begin{gathered} \text { E } \\ \text { Gram } \end{gathered}$	$\begin{gathered} \text { W } \\ \text { Gram } \end{gathered}$
All	. 429		. 345		. 492			
	. 367				. 424			
Bils Only	**				***			
	. 605		. 578		. 672		. 531	
Mons Only	**		**		***		*	

${ }^{*} \mathrm{p}<.05{ }^{* *} \mathrm{p}<.01{ }^{* * *} \mathrm{p}<.001$

Raven's:

	Primary School Age				Teens			
			$\begin{gathered} \mathrm{E} \\ \text { Gram } \end{gathered}$	$\begin{gathered} \text { W } \\ \text { Gram } \end{gathered}$	BPVS	PGC	E Gram	W Gram
All								
Bils Only								
Mons Only								

Younger Adults

			E	W			E	W
	BPVS	PGC	Gram	Gram	BPVS	PGC	Gram	Gram
All								
Bils Only								
Mons Only								

${ }^{*} \mathrm{p}<.05{ }^{* *} \mathrm{p}<.01{ }^{* * *} \mathrm{p}<.001$

Raven's:

Younger Adults

			E	W			E	W
	BPVS	PGC	Gram	Gram	BPVS	PGC	Gram	Gram
All								
Bils Only								
Mons Only								

${ }^{*} \mathrm{p}<.05{ }^{* *} \mathrm{p}<.01{ }^{* * *} \mathrm{p}<.001$

Raven's:

	Primary School Age				Teens			
	BPVS	PGC	E Gram	W Gram	BPVS	PGC	E Gram	W Gram
	. 452	. 326	. 251		. 332	. 255		
All	***	*	*		***	*		
	. 409	. 326	. 271		. 332	. 255		
Bils Only	***	*	*		***	*		
	. 688		. 544					
Mons Only	***		*					

Younger Adults

	BPVS	PGC	E Gram	W Gram	BPVS	PGC	$\begin{gathered} \text { E } \\ \text { Gram } \end{gathered}$	W Gram
	. 402		. 215		. 409		. 396	. 536
All	***		*		***		***	***
	. 428		. 200		. 481		. 383	. 536
Bils Only	***		*		***		***	***
					. 517		. 454	
Mons Only					**		*	

${ }^{*} \mathrm{p}<.05{ }^{* *} \mathrm{p}<.01 \quad * * * \mathrm{p}<.001$

REGRESSIONS, BPVS
 Each Age Group:

BPVS (E Vocabulary)
Predictor Variables:

REGRESSIONS, BPVS

Each Age Group:
BPVS (E Vocabulary)
Predictor Variables:
Age (months)
HL
McCarthy / Raven's SES

REGRESSIONS, BPVS

REGRESSIONS, BPVS

AGE	Model	df	Variable	\boldsymbol{t}	\boldsymbol{p}	$\boldsymbol{\beta}$
3	III	66	Age	2.75	.008	.239
			HL	7.436	.000	.573
			McCarthy	3.71	.000	.322
4						
5						
Primary						

REGRESSIONS, BPVS

AGE	Model	df	Variable	\boldsymbol{t}	\boldsymbol{p}	$\boldsymbol{\beta}$
3	III	66	Age	2.75	.008	.239
			HL	7.436	.000	.573
			McCarthy	3.71	.000	.322
4	IV	64	HL	3.68	.000	.390
			McCarthy	2.251	.028	.299
			SES	2.082	.041	.220
5						
Primary						

REGRESSIONS, BPVS

AGE	Model	df	Variable	\boldsymbol{t}	\boldsymbol{p}	$\boldsymbol{\beta}$
3	III	66	Age	2.75	.008	.239
			HL	7.436	.000	.573
			McCarthy	3.71	.000	.322
4	IV	64	HL	3.68	.000	.390
			McCarthy	2.251	.028	.299
			SES	2.082	.041	.220
5	IV	63	HL	5.464	.000	.522
			McCarthy	3.471	.001	.347
			SES	3.189	.002	.317
Primary						

REGRESSIONS, BPVS

AGE	Model	df	Variable	\boldsymbol{t}	\boldsymbol{p}	$\boldsymbol{\beta}$
3	III	66	Age	2.75	.008	.239
			HL	7.436	.000	.573
			McCarthy	3.71	.000	.322
4	IV	64	HL	3.68	.000	.390
			McCarthy	2.251	.028	.299
			SES	2.082	.041	.220
5	IV	63	HL	5.464	.000	.522
			McCarthy	3.471	.001	.347
			SES	3.189	.002	.317
Primary	III	52	HL	2.77	.008	.338
			McCarthy	2.259	.028	.292

REGRESSIONS, BPVS

AGE	Model	df	Variable	\boldsymbol{t}	\boldsymbol{p}	$\boldsymbol{\beta}$
Primary						
Teens						
Younger Adults						
Older Adults						

REGRESSIONS, BPVS

AGE	Model	df	Variable	\boldsymbol{t}	\boldsymbol{p}	$\boldsymbol{\beta}$
Primary	III	54	Raven's	3.05	.004	.366
			HL	2.62	.011	.310

Younger Adults

Older
Adults

REGRESSIONS, BPVS

AGE	Model	df	Variable	t	p	$\boldsymbol{\beta}$
Primary	III	54	Raven's	3.05	. 004	. 366
			HL	2.62	. 011	. 310
Teens	IV	78	HL	2.95	. 004	. 287
			SES	2.83	. 006	. 276
			Raven's	2.36	. 021	. 239
Younger Adults						
Older Adults						

REGRESSIONS, BPVS

AGE	Model	df	Variable	\boldsymbol{t}	\boldsymbol{p}	$\boldsymbol{\beta}$
Primary	III	54	Raven's	3.05	.004	.366
			HL	2.62	.011	.310
Teens	IV	78	HL	2.95	.004	.287
			SES	2.83	.006	.276
			Raven's	2.36	.021	.239
Younger	IV	105	Age	4.992	.000	.403
Adults			HL	3.95	.000	.312
			SES	2.14	.035	.166
			Raven's	2.03	.045	.169

Older
Adults

REGRESSIONS, BPVS

AGE	Model	df	Variable	\boldsymbol{t}	\boldsymbol{p}	$\boldsymbol{\beta}$
Primary	III	54	Raven's	3.05	.004	.366
			HL	2.62	.011	.310
Teens	IV	78	HL	2.95	.004	.287
			SES	2.83	.006	.276
			Raven's	2.36	.021	.239
Younger	IV	105	Age	4.992	.000	.403
Adults			HL	3.95	.000	.312
			SES	2.14	.035	.166
			Raven's	2.03	.045	.169
Older	III	86	Raven's	4.12	.000	.407
Adults			SES	2.37	.020	.227

REGRESSIONS, SIMON

Each Age Group:
SIMON [Teens, Younger and Older Adults] [Cong: Acc, RT; Incong: Acc, RT]

Predictor Variables:

REGRESSIONS, SIMON

Each Age Group:
SIMON [Teens, Younger and Older Adults] [Cong: Acc, RT; Incong: Acc, RT]

Predictor Variables:
Age (months),
Mon/Bil [or HL]
BPVS
Raven's
SES

REGRESSIONS, SIMON

REGRESSIONS, SIMON

REGRESSIONS, SIMON

	Variable	Cong. Acc.	Cong. RT	Incong. Acc.	Incong. RT
Teens	Age				$\begin{gathered} t(76)=2.17^{*} \\ \beta=.241 \end{gathered}$
	Mon/Bil		$\begin{gathered} t(75)=2.05^{*} \\ \beta=.297 \\ \hline \end{gathered}$		
	BPVS			$\begin{gathered} t(75)=2.07^{*} \\ \beta=.234 \\ \hline \end{gathered}$	
	Raven's				$\begin{gathered} t(75)=2.22^{*} \\ \beta=.255 \end{gathered}$
	SES				
Younger Ads	Age				
	Mon/Bil				
	BPVS				
	Raven's				
	SES				
Older Ads	Age				
	Mon/Bil				
	BPVS				
	Raven's				
	SES				

REGRESSIONS, SIMON

AGE	Variable	Cong. Acc.	Cong. RT	Incong. Acc.	Incong. RT
Teens	Age				$\begin{gathered} t(76)=2.17^{*} \\ \beta=.241 \end{gathered}$
	Mon/Bil		$\begin{gathered} t(75)=2.05^{*} \\ \beta=.297 \end{gathered}$		
	BPVS			$\begin{gathered} t(75)=2.07^{*} \\ \beta=.234 \\ \hline \end{gathered}$	
	Raven's				$\begin{gathered} t(75)=2.22^{*} \\ \beta=.255 \end{gathered}$
	SES				
Younger Ads	Age			$\begin{gathered} t(67)=2.76^{* *} \\ \beta=.319 \end{gathered}$	$\begin{gathered} t(66)=2.24^{*} \\ \beta=.249 \end{gathered}$
	Mon/Bil				
	BPVS				
	Raven's	$\begin{gathered} t(66)=2.52^{*} \\ \beta=.303 \end{gathered}$	$\begin{gathered} t(66)=2.40^{*} \\ \beta=.297 \\ \hline \end{gathered}$		$\begin{gathered} t(66)=4.76^{* * *} \\ \beta=.529 \end{gathered}$
	SES				
Older Ads	Age				
	Mon/Bil				
	BPVS				
	Raven's				
	SES				

REGRESSIONS, SIMON

AGE	Variable	Cong. Acc.	Cong. RT	Incong. Acc.	Incong. RT
Teens	Age				$\begin{gathered} t(76)=2.17^{*} \\ \beta=.241 \end{gathered}$
	Mon/Bil		$\begin{gathered} t(75)=2.05^{*} \\ \beta=.297 \end{gathered}$		
	BPVS			$\begin{gathered} t(75)=2.07^{*} \\ \beta=.234 \\ \hline \end{gathered}$	
	Raven's				$\begin{gathered} t(75)=2.22^{*} \\ \beta=.255 \\ \hline \end{gathered}$
	SES				
Younger Ads	Age			$\begin{gathered} t(67)=2.76^{* *} \\ \beta=.319 \end{gathered}$	$\begin{gathered} t(66)=2.24^{*} \\ \beta=.249 \end{gathered}$
	Mon/Bil				
	BPVS				
	Raven's	$\begin{gathered} t(66)=2.52^{*} \\ \beta=.303 \\ \hline \end{gathered}$	$\begin{gathered} t(66)=2.40^{*} \\ \beta=.297 \\ \hline \end{gathered}$		$\begin{gathered} t(66)=4.76^{* * *} \\ \beta=.529 \end{gathered}$
	SES				
Older Ads	Age				
	Mon/Bil	$\begin{aligned} & t(67)^{* * *} \\ & \beta=.380 \\ & \hline \end{aligned}$		$\begin{aligned} & t(67)^{* * *} \\ & \beta=.478 \end{aligned}$	
	BPVS		$\begin{gathered} t(67)=2.34^{*} \\ \beta=.271 \\ \hline \end{gathered}$		
	Raven's				
	SES				

CONCLUSIONS

These studies provide a valuable addition to our knowledge concerning the factors that influence performance

- both on linguistic forms and EF tasks:

CONCLUSIONS

Linguistic:

Exposure
Language balance
Age of Acquisition
2L1, L2
Relation between the 2 languages
Processing
Interaction between Inhibition and Integration SES
General Cognitive level

CONCLUSIONS

EF:
Language proficiency
SES
General Cognitive level
Bilingualism
2L1, L2

CONCLUSIONS

These factors are often highly correlated, but their relative contributions seem to vary considerable across distinct ages and on distinct task types.
The present studies have gone a considerable distance in contributing to these debates.
We need to take seriously the importance of multiple factors in influencing performance in bilinguals.

