

Cognitive Reserve

Yaakov Stern Cognitive Neuroscience Division, Department of Neurology Columbia University College of Physicians and Surgeons

www.cogneurosci.org

Thanks to:

Collaborators: Teal Eich Yunglin Gazes Christian Habeck Hwamee Oh Qolomreza Razlighi Jason Steffener Laura Zahodne

Timothy Salthouse (UVA)

Assistance: Dan Barulli Oksana Tatarina-Nulman Zoltan Apa **Brittany DeFeis** Erica Hahn Briana Hill Dan Liu Deirdre O'Shea David Parker

Support: National Institute on Aging

What is Cognitive Reserve?

Cognitive reserve may explain the disjunction between the degree of brain damage and the clinical manifestation of that damage.

Mechanisms underlying reserve

- Brain reserve:
 - More neurons/synapses to lose
 - Anatomic changes on the basis of experience
- Cognitive Reserve:
 - Resilience/plasticity of cognitive networks in the face of disruption
- Brain Maintenance:
 - Direct effect of lifestyle/activities on aging/disease pathology

Brain Reserve: Association Between Head Circumference and Alzheimer's Disease

Schofield, et al, 1997

Brain Reserve is Not So Simple

The literature suggests that exercise and environmental stimulation can activate brain plasticity mechanisms and remodel neuronal circuitry in the brain.

They can increase:

- Vascularization (exercise)
- Neurogenesis in the dentate
- Brain volume/Cortical thickness
- Neuronal survival and resistance to brain insult
- Brain-derived neurotrophic factor (BDNF) -- benefits brain plasticity processes

Feature Review

Memory aging and brain maintenance

Lars Nyberg^{1,2,3,7}, Martin Lövdén^{4,5,6}, Katrine Riklund^{1,3}, Ulman Lindenberger⁵ and Lars Bäckman⁴

- Relative lack of brain pathology is the biggest contributor to heterogeneity of cognitive aging
- Various lifestyle factors contribute to resisting the advent of pathology
- Issues:
 - Neuroprotective but not compensatory
 - Unlike reserve, does not account for maintained performance GIVEN pathology or brain damage

Can lifetime cognitive engagement impact amyloid development?

Figure 1. Individuals with greater cognitive engagement show reduced amyloid burden. Carbon 11–labeled Pittsburgh Compound B ([¹¹C]PiB) in cognitively normal older participants (x-axis) is inversely associated with past cognitive activity (y-axis) (linear regression, $\beta = -1.73 \pm 0.47$; P < .001). Both variables are residual values after correcting for age, sex, and years of education.

Landau et al, Arch Neurol. Published online January 23, 2012

Advancing AD Pathology

Incident Dementia in The Washington Heights Study

Group	Ν	Incident Cases	Relative Risk	95% CI
Low Education	264	69	2.02	1.3-3.1
High Education	318	37	1	
Low Occupation	327	71	2.25	1.3-3.8
High Occupation	201	17	1	

Stern et al, JAMA 1994

Incidence of Dementia As A Function of Past Leisure Activities

• Relative risk of incident dementia in high vs. low leisure

- RR = 0.59 (0.44 - 0.79)

• Same analysis, controlling for education and occupation

- RR = 0.62 (0.46 - 0.83)

Scarmeas et al, Neurology 2001

Study	High activity	Low activity	OR	Weight	OR
(first-named author)	(n/N)	(n/N)	(95% Cl random)	(%)	(95% Cl random)
Education					
Hebert (1992)	34/362	42/149	e	2.6	0.26 (0.16-0.44)
Pavkel (1994)	13/376	36/783		1.8	0.74 (0.39-1.42)
Bickel (1994)	7/84	27/230		1.1	0.68 (0.29-1.63)
Stem (1994)	37/329	69/264		3.1	0.36 (0.23-0.56)
Cobb (1995)	138/2033	37/267		3.5	0.45 (0.31-0.67)
Person (1996)	8/86	30/236		1.2	0.70 (0.31-1.60)
Schmand (1990)	50/040	03/1114		4.1	0.73 (0.52-1.02)
Evans (1997)	24/312	70/326		2.7	0.30 (0.12-0.50)
Evans (1997)	24/512 50/604	10/320		2.7	0.30(0.19-0.30)
CH (1000)	20/004	69/2601		3.4	0.51 (0.22, 0.77)
Oll (1999) Commili (2000)	3 <i>2</i> /2360	112/562		3.2	0.51(0.33-0.77)
Ganguli (2000)	8///30	112/562		4.5	0.54 (0.40-0.75)
Scarmeas (2001)	82/800	130/922		4.0	0.64 (0.48-0.85)
Qiu (2001)	3//330	110/760		3.3	0.44 (0.30-0.65)
Fitzpatrick (2004)	323/2598	154/764		5.7	0.56 (0.46-0.69)
Tuokko (2003)	63/289	79/232	_ -	3.5	0.54 (0.37-0.80)
Occupation					
Bickel (1994)	10/153	24/159	e	1-4	0.39 (0.18-0.85)
Stem (1994)	17/201	71/327	- _	2.2	0.33 (0.19-0.58)
Paykel (1994)	20/454	28/683	_	2.1	1.08 (0.60-1.94)
Evans (1997)	22/245	50/284	_	2.4	0.46 (0.27-0.79)
Schmand (1997)	29/682	111/1206	_ - •_	3.2	0.44 (0.29-0.67)
Schmand (1997)	36/668	110/1173	_ _	3.5	0.55 (0.37-0.81)
Jorm (1998)	7/178	6/86	e	0.7	0.55 (0.18-1.68)
Elias (2000)	46/467	63/607	_ _	3-4	0.94 (0.63-1.41)
Scarmeas (2001)	37/425	126/1013	_ - •	3.6	0.67 (0.46-0.99)
Helmer (2001)	21/281	372/2669	e	2.9	0.50 (0.32-0.79)
Anttila (2004)	21/652	27/420	e	2.1	0.48 (0.27-0.87)
Karp (2004)	52/574	49/339	_ _ _	3.3	0.59 (0.39-0.89)
Premorbid IO					
Schmand (1997)	62/1084	90/979		4.1	0.60 (0.43-0.84)
Elias (2000)	23/271	40/271	_	2.2	0.54 (0.31-0.92)
Leisure activity		101211	_		···(•···•)_)
Eastigliani (2000)	120/064	47/220	_	27	0.63 (0.44, 0.01)
Scarmage (2001)	77/201	120/991		5-7	0.55 (0.41-0.74)
Wang (2002)	37/228	86/204		4.5	0.44 (0.20-0.67)
Warghese (2002)	8/1330	40/27		2.2	0.33 (0.20-0.54)
vergnese (2005)	04/302	40/67		2.2	0.35 (0.20-0.54)
Total (95% Cl)	1733/21456	2574/21468	•	100-0	0.54 (0.49-0.59)
Test for heterogeneity χ^2	=55.62, df=32, p=0	006			
Test for overall effect $z =$	-12·30, p<0·00001	,			
		0.1	0.2 1 5	5 10	
		Fa	wours protective Favo	ours risk factor	

Valenzuela & Sachdev, Psychological Medicine, 2005

Literacy and memory decline in non-demented elders

Manly et al, JCEN 2003

Association of Education With Cognitive Decline in the Washington Heights Study

Model-estimated cognitive trajectories for 76-year-old, White, non-Hispanic Males born 1900-1909, recruited in 1992, with low (0-8 years) or high (9-20 years) education

Zahodne et al, Neuropsychology 2014

AD Neuropathology

More rapid memory decline in AD patients with higher educational attainment

Stern et al Neurology 1999;53:1942-1957

Bronx Aging Study

Years Before Diagnosis

Blue indicates less than 7 years education (32 Ss), red indicates 8 to 11 years (64 Ss), and green indicates 12 or more years education (21 Ss).

Hall, C. B. et al. Neurology 2007;69:1657-1664

Reserve, AD Pathology, and Clinical Diagnosis

Stern, JINS 2002

Education and rCBF

Controlling for clinical disease severity, there is an inverse relationship between education and a functional imaging proxy for AD pathology

Stern et al, Ann Neurol 1992

Interaction of AD Pathology and Education

Bennett DA et al, Neurology 2003

Cognitive Reserve, Aging and AD

- Two individuals who appear the same clinically, whether demented of non-demented, can have widely divergent levels of underlying age-related neural changes or AD pathology.
- Thus, the clinical diagnosis of normal aging, MCI or AD may be accompanied by very minimal pathology or more than enough to meet pathological criteria for AD.
- Measuring CR therefore becomes an important component of diagnosing and characterizing aging and dementia.

Current Study of the Neural Implementation of Cognitive Reserve

Current Directions: Moderated Mediation Analyses

Steffener et al, PLoS ONE 2014

Areas with significant mediated moderation

Mediated Moderation Sample Result

Influence of Cognitive Reserve on Strategy Selection in Normal Aging

- 100 two-digit by two-digit multiplication problems were presented, e.g. 58 X 32
- Participants were asked to choose the strategy that would get them closest to the actual product: rounding both digits up or both down
- They solved the problem and stated their strategy

Influence of Cognitive Reserve on Strategy Selection in Normal Aging

- Older participants were significantly worse at using the appropriate strategy than younger participants, and had longer reaction times
- Elders with higher verbal IQ chose the best strategy more often than those with lower verbal IQ; almost association with IQ was seen in the younger group
- This could suggest a relationship between CR and strategy selection

Neural Implementation of CR

How Would Reserve-based Interventions Work?

Richards, JCEN 2003

Conclusions

- Epidemiologic and imaging evidence support the concept of reserve
- Reserve is malleable: it is influenced by aspects of experience in every stage of life
- The concept of cognitive reserve is applicable to a wide range of conditions that impact on brain function at all ages
- Imaging studies can help clarify the neural implementation of reserve
- Influencing reserve can delay or reverse the effects of aging or brain pathology